Rational points on abelian varieties over function fields and Prym varieties

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Groups of Rational Points on Abelian Varieties over Finite Fields

Fix an isogeny class of abelian varieties with commutative endomorphism algebra over a finite field. This isogeny class is determined by a Weil polynomial fA without multiple roots. We give a classification of groups of rational points on varieties from this class in terms of Newton polygons of fA(1− t).

متن کامل

Counting rational points on ruled varieties over function fields

Let K be the function field of an algebraic curve C defined over a finite field Fq. Let V ⊂ PK be a projective variety which is a union of lines. We prove a general result computing the number of rational points of bounded height on V/K. We first compute the number of rational points on a general line defined over K, and then sum over the lines covering V . Mathematics Subject Classification: 1...

متن کامل

On the number of rational points on Prym varieties over finite fields

We give upper and lower bounds for the number of rational points on Prym varieties over finite fields. Moreover, we determine the exact maximum and minimum number of rational points on Prym varieties of dimension 2.

متن کامل

Groups of Points on Abelian Varieties over Finite Fields

Fix an isogeny class of abelian varieties with commutative endomorphism algebra over a finite field. This isogeny class is determined by a Weil polynomial fA without multiple roots. We give a classification of groups of k-rational points on varieties from this class in terms of Newton polygons of fA(1− t).

متن کامل

Abelian varieties over finite fields

A. Weil proved that the geometric Frobenius π = Fa of an abelian variety over a finite field with q = pa elements has absolute value √ q for every embedding. T. Honda and J. Tate showed that A 7→ πA gives a bijection between the set of isogeny classes of simple abelian varieties over Fq and the set of conjugacy classes of q-Weil numbers. Higher-dimensional varieties over finite fields, Summer s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archiv der Mathematik

سال: 2020

ISSN: 0003-889X,1420-8938

DOI: 10.1007/s00013-020-01550-4